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Abstract

Estimation and inferences for the hemodynamic response functions (HRF) using multi-

subject fMRI data are considered. Within the context of the General Linear Model, two

new nonparametric estimators for the HRF are proposed. The first is a kernel-smoothed

estimator, which is used to construct hypothesis tests on the entire HRF curve, in contrast

to only summaries of the curve as in most existing tests. To cope with the inherent large

data variance, we introduce a second approach which imposes Tikhonov regularization

on the kernel-smoothed estimator. An additional bias-correction step, which uses multi-

subject averaged information, is introduced to further improve efficiency and reduce the

bias in estimation for individual HRFs. By utilizing the common properties of brain ac-

tivity shared across subjects, this is the main improvement over the standard methods

where each subject’s data is usually analyzed independently. A fast algorithm is also

developed to select the optimal regularization and smoothing parameters. The proposed

methods are compared with several existing regularization methods through simulations.

The methods are illustrated by an application to the fMRI data collected under a psychol-

ogy design employing the Monetary Incentive Delay (MID) task.
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1. Introduction

There is a vast literature in functional magnetic resonance imaging (fMRI) data anal-

ysis on estimating the hemodynamic response function (HRF) within the framework of

the General Linear Model (GLM) (Friston et al., 1995a; Friston et al., 1995b; Worsley and

Friston, 1995). These methods differ in their assumptions about the shape of the HRFs.

Standard parametric approaches assume a functional form for the HRF with a number

of free parameters, such as the canonical form of mixtures of gamma functions (Friston

et al., 1998; Glover, 1999; Worsley et al., 2002), poisson function (Friston et al., 1994),

inverse logit function (Lindquist and Wager, 2007), and radial basis functions (Riera et

al., 2004). Except for the model using the canonical form and its derivatives, estima-

tion for parametric models with even a moderate number of parameters often relies on

computationally-intensive iterative methods (such as the Gauss-Newton method), which

can lead to unstable estimates when the algorithms do not converge (Liao, et al., 2002).

This paper alternatively focuses on nonparametric approaches, which are flexible and

usually fast to compute. Bai et al. (2009) and Wang et al. (2011) constructed nonparamet-

ric estimates of the HRF in the frequency domain. Nonparametric methods in the time

domain mainly fall into two types: representing the HRF with a linear combination of

functional bases (Aguirre et al., 1998; Woolrich et al., 2004; Zarahn, 2002; Vakorin et al.,

2007), or treating the HRF at every unit time point as a free parameter (Dale, 1999; Lange

et al., 1999). In this paper we adopt the latter approach in the time domain to develop

nonparametric estimation and inferences for HRFs.

Since nonparametric methods for HRF estimation involve many free parameters and

the HRF is generally believed to be smooth (Buxton et al., 2004), smoothing techniques

are often employed. Kernel smoothing is a popular nonparametric statistical method for

increasing temporal continuity of functional estimates (Eubank, 1988; Härdle, 1990). It

has been used for temporal smoothing of fMRI time series (e.g., Friston et al., 1994; Wors-

ley and Friston, 1995), but has rarely been used for HRF estimation. In this paper, we

first introduce a kernel-smoothed HRF estimator, based on which we construct hypothe-
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sis tests on the entire HRF curve, in contrast to the common practice of testing only some

characteristics of the HRF.

Regularization is another increasingly popular technique used in nonparametric es-

timation that allows smoothness constraints to be imposed on the HRF estimates. One

example is the smooth finite impulse response method (SFIR, Glover, 1999; Goutte et al.,

2000; Ollinger et al., 2001), which exploits a regularization term to obtain smooth esti-

mates that satisfy a boundary condition. Another example is given in Marrelec et al.

(2001, 2003), where the HRF is represented by orthogonal functional bases and a smooth-

ness constraint is imposed through regularizing the norm of its second order derivative.

Similarly, representing the HRF by spline bases, Vakorin et al. (2007) and Zhang et al.

(2007) used Tikhonov regularization (Tikhonov and Arsenin, 1977). The estimator pro-

posed by Casanova et al. (2008, 2009) combines Tikhonov regularization and generalized

cross validation (Wahba, 1990) (referred to Tik-GCV hereafter), greatly reducing the com-

putational burden involved in parameter selection. Motivated by these developments,

a second goal of this paper is to propose a new nonparametric estimator that combines

kernel smoothing with Tikhonov regularization. Distinct from previous methods, this

approach controls the degree of temporal smoothness and the norm of the estimates by

two separate parameters. This separation makes the estimator more adaptive to different

combinations of HRF temporal resolution and signal-to-noise ratio (SNR).

In analyzing multi-subject fMRI data, many existing methods, both parametric and

nonparametric, estimate each subject’s HRF independently to account for its variability

across subjects (Aguirre et al., 1998; Handwerker et al., 2004). When data from each in-

dividual has a low SNR, utilizing the common characteristics of the HRFs shared across

the population may improve the estimation efficiency. Moreover, for such data, though

a strong scale of regularization is effective in stabilizing estimates, it also introduces ad-

ditional biases. Thus, bias correction can be considered to improve over the regularized

estimates (e.g., Zhang et al., 2007). Assuming that, under the same stimulus and in the

same brain regions, the HRFs have similar functional shapes across subjects (Friston et al.,
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1998; Handwerker et al., 2004), we propose to use sample-averaged HRF estimates to con-

duct bias correction for the regularization-based estimates. A fast algorithm is developed

to select regularization and smoothing parameters and to evaluate the new estimators.

Through simulations, the proposed bias-corrected estimator demonstrates significant im-

provement over the estimators without the bias-correction step.

The article is organized as follows. In Section 2, we briefly review the GLM framework

and propose the nonparametric kernel-smoothed estimator for hypothesis testing on the

whole curve of the HRF. We then refine the estimator by adding Tikhonov regularization

and applying bias correction. Two fast algorithms for parameter selection are also devel-

oped. Section 3 presents results from applying the proposed methods to both simulated

data and real fMRI data, and comparisons are drawn to several existing methods. Section

4 concludes with a discussion.

2. Materials and Methods

2.1. The GLM

We conduct massive univariate analysis of fMRI data in the context of the GLM. Since

the same approach applies to each voxel, the subscript for voxel is omitted here. Let yi(t)

for t = 1, · · · , T and i = 1, · · · , N be the fMRI time series for a pre-specified voxel of

subject i, where T is the total observation time and N is the number of subjects. Sup-

pose the design has K stimuli. Let vi,k(t) be the kth (k = 1, · · · , K) stimulus function for

subject i with vi,k(t) = 1 if the stimulus is evoked at time t and 0 otherwise. The GLM

represents the observed fMRI time series as a convolution of the HRF and the stimuli:

yi(t) =
∑K

k=1

∫ m
0
hi,k(u)vi,k(t−u)du+ εi(t), where hi,k is the HRF of the pre-specified voxel

in subject i under stimulus k, m is a known positive constant beyond which the HRF

equals zero, and εi(t) is an identically-distributed error term. The blood oxygen level de-

pendent (BOLD) fMRI signal often contains a low-frequency drift due to physiological

noise or subject motion (Smith et al., 1999; Brosch et al., 2002; Luo and Puthusserypady,

2008); this can be modeled by adding a polynomial term of time t (Mattay et al., 1996;
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Worsley et al., 2002; Lindquist, 2008) to the above GLM as

yi(t) = d0,i + d1,i · t+ d2,i · t2 +
K∑
k=1

∫ m

0

hi,k(u)vi,k(t− u)du+ εi(t), (1)

where the drift parameters d0,i, d1,i, and d2,i are allowed to vary across subjects.

2.2. Kernel-Smoothed Nonparametric Estimator

We treat each HRF at every unit time as a free parameter. Let ∆ be the time unit

representing the discretization of the HRF temporal resolution. Since it is possible to

have the temporal resolution of the HRF shorter than that of the fMRI data (Ciuciu et

al., 2003; Casanova et al., 2008), ∆ can be smaller than the repetition time unit (TR) of

the experimental design. For each subject i, let Yi = (yi(1), ..., yi(T ))′ be the observed

fMRI time series. Denote the discretized values of the HRF under stimulus k by βi,k =

(βi,k(1), · · · , βi,k(m))′, where βi,k(t) =
∫ t·∆

(t−1)·∆ hi,k(u)du in a block design or βi,k(t) = hi,k(t ·

∆) in an event-related design (Josephs et al., 1997). Let βi = (β′i,1, · · · ,β′i,K)′. Denoting all

the coefficients (d0,i, d1,i, d2,i,β
′
i)
′ by ηi, the GLM (1) can be written in a matrix form as

Yi = Xiηi + εi, (2)

where Xi is the design matrix corresponding to the time covariates and the stimulus func-

tions for subject i, and εi = (ε1, · · · , εT )′ ∼ N(0, σ2
i Σi) with unknown variance σ2

i and

correlation matrix Σi. Since hi,k(t) is random across subjects, the coefficients βi are also

random. As a result, model (2) is a linear random-effect model. For each subject, we

can remove the drift term through ordinary least square (OLS) regression and obtain an

unbiased OLS estimate of βi, denoted by β̂i = (β̂i,1(1), · · · , β̂i,1(m), β̂i,2(1), · · · , β̂i,K(m))′.

As noted in Goutte et al. (2000), β̂i usually has an artificial high-frequency noise due to

the large number of parameters under estimation and experimental designs with inter-

leaved stimuli and inter-stimulus intervals. This can be clearly seen from the simulation

example in Figure 2(a). Therefore, smoothing techniques are often employed to reduce
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the unnatural ruggedness of the estimates.

Previous approaches have typically applied temporal smoothing directly to yi(t) to

increase the statistical power for detecting responsive regions (e.g., Friston et al., 1994;

Friston et al., 1995b; Worsley and Friston, 1995). The HRFs are generally believed to be

smooth (e.g., Buxton et al., 2004); while smoothing the HRF estimated from the fMRI time

series guarantees the smoothness of the resulting curve, directly smoothing the original

fMRI times series does not, especially in complex designs with multiple stimuli. Since our

interest lies in estimating the HRF and the degree of smoothness may vary across HRFs

under different stimuli, we choose to conduct kernel smoothing on the OLS estimates β̂i.

Specifically, we propose to use the Nadaraya-Watson kernel estimator:

β̃i,k(t) =
t+l∑

u=t−l

Wt,u · β̂i,k(u), with Wt,u =
f( t−u

h
)/h∑t+l

u=t−l f( t−u
h

)/h
. (3)

Here h is a pre-specified bandwidth controlling the degree of smoothing, f(t) is a given

symmetric density function (kernel), and l is a pre-specified constant giving an upper

bound on the number of data points used for the estimation. In this article, we let f(t) be

a standard Gaussian density and l = m. Existing results suggest that the choice of these

two values has only a small effect on the estimation (Eubank, 1988; Härdle, 1990). The

choice of the key bandwidth parameter h is elaborated in Section 2.5. The underlying idea

of kernel smoothing is to borrow information from the neighboring data: the estimate

β̃i,k(t) is a weighted average of the neighboring OLS estimates and the weight Wt,u is

negatively correlated with the distance |u − t|. The boundary condition of βi,k(t) = 0 for

t < 0 and t > m is imposed by setting β̂i,k(u) = 0 for u < 1 and u > m in the estimator (3).

Letting β̂i,k = (β̂i,k(1), · · · , β̂i,k(m))′ and β̃i,k = (β̃i,k(1), · · · , β̃i,k(m))′, the first estimator we

propose is a kernel-smoothed estimator that can be expressed as a matrix transformation

of the OLS estimators as follows:

β̃i,k = Bhβ̂i,k and β̃i = Ahβ̂i, (4)
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where Bh is anm×mmatrix such that Bh(t, u1) = Wt,u1 for u1, t = 1, · · · ,m, Ah = IK
⊗

Bh

with
⊗

denoting the Kronecker product, and IK is a K ×K identity matrix.

2.3. Tikhonov-Regularized Smoothed Estimator with Bias-Correction

The above kernel smoothing procedure increases the temporal continuity of HRF es-

timates. However, with the large number of free parameters to be evaluated, large vari-

ation in the magnitude of β̃i,k(t) across time may still persist. Tikhonov regularization

(Tikhonov and Arsenin, 1977) is a common statistical technique used to address ill-posed

inverse problems, and is effective in reducing the variation of regression estimates. A

Tikhonov-regularized estimate of the regression coefficient ηi in model (2) is obtained

through solving the following optimization problem

min
ηi

‖ Yi −Xiηi ‖2 + ‖ Γηi ‖2, (5)

for some suitably-chosen matrix Γ, where || · || is the L2 norm. The minimizer η̂Ti of (5) is

given by (X′iXi + Γ′Γ)−1X′iYi.

Different choices of Γ defines different Tikhonov-regularized estimators. One choice

of Γ in the fMRI literature is the discrete second derivative matrix, as adopted in Marrelec

et al. (2003), and Casanova et al. (2008, 2009). Another choice of Γ is the scalar matrix

αIdim(ηi), where Idim(ηi) is an identity matrix with the dimension of ηi. Solution from this

Γ is equivalent to that from a ridge regression, a special case of Tikhonov regularization.

Our choice of Γ is slightly modified from the above. Specifically, the dimension of ηi in

our application is 3 + K ×m, but regularization is imposed only on the estimates of the

subvector βi of ηi, excluding the drift parameters ds. We let Γ =
√
λD, where D is a

(3 +K×m)-by-(3 +K×m) diagonal matrix whose first 3 diagonal entries equal zero and

the rest equal 1, and λ is a given positive constant controlling the degree of regularization.

Letting Ri
λ be the lower (K ×m)-by-(K ×m) square sub-matrix of (X′iXi + λD)−1(X′iXi),

the Tikhonov-regularized estimator of βi corresponding to this Γ is Ri
λβ̂i (detailed deriva-

tion and explanation is given in Appendix). Since this regularization does not impose
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any smoothness constraint, Ri
λβ̂i can still be rough. Therefore, we once again use ker-

nel smoothing as in (4) to increase its temporal continuity and define a new estimator:

β̃
r

i = AhR
i
λβ̂i, which we call the Tik-Kern estimator. Comparing to the existing regular-

ization methods that directly apply Tikhonov regularization, such as SFIR and Tik-GCV,

the Tik-Kern estimator β̃
r

i separately impose the constraints for regularization and for

smoothing.

Tikhonov regularization and kernel smoothing together greatly reduce the variances

in estimating HRFs, but they can also lead to large biases without further adjustment.

This motivates us to propose an additional bias-correction step to β̃
r

i . It is easy to show

that the bias of β̃
r

i equals [AhR
i
λ − IK·m]βi, depending on the underlying true βi. A close

approximation to βi for each i is usually unavailable in practice. Intuitively, if the HRFs

of sampled subjects for a given stimulus and a fixed brain region have similar functional

shapes, each βi,k should be reasonably close to
∑N

i=1 βi,k/N (Liao et al., 2002; Henson

et al., 2002). As such, one can use a sample-averaged estimate to approximate βi in the

presence of multiple subjects. Specifically, building on top of β̃
r
, we propose the following

bias-corrected estimator β̃
cor

(hereafter referred to as the BTik-Kern estimator):

β̃
cor

i = β̃
r

i −
(
AhR

i
λ − IK·m

)
β̃

0
, (6)

where β̃
0

= Ah0

∑N
i=1 β̂i/N , and the initial smoothing bandwidth h0 is 1/

√
7/TR (Goutte

et al., 2000). Since h0 is relatively small, β̃
0

usually has small variance and bias. In our

analysis, estimation of the HRFs will all base on the BTik-Kern estimator instead of the

Tik-Kern estimator. Upon obtaining the estimates β̃
cor

, we extract the summary statistics

of the HRF, such as time to peak (TTP), width (W), and height (HR), using procedures

as described in Lindquist and Wager (2007) for further analysis. The various estimators

introduced above is summarized in Table 1.
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Estimator Description
β̂ The OLS estimates
β̃ The kernel-smoothed OLS estimator, used for hypothesis testing
β̃r (Tik-Kern) The Tikhonov-regularized estimator based on β̃
β̃cor (BTik-Kern) The bias-corrected Tik-Kern estimator, used for estimation

Table 1: Summaries of the estimators in Sections 2.2 and 2.3.

2.4. Kernel Estimate-Based Hypothesis Testing and Confidence Interval

We now use the proposed estimators to perform statistical inferences for population-

wide brain activity. First, we identify brain voxels that are responsive to a specific stim-

ulus. Next, we identify brain voxels that function differently in response to different

stimuli. We formulate these two goals as two corresponding hypothesis tests for each

voxel: (1) H0 : E(βi,k) = µk for some given stimulus k, where the expectation applies to

all subjects, and µk is a pre-specified vector of constants which is usually a zero vector;

and (2) H0 : E(βi,k) = E(βi,k′) for k 6= k′.

Distinct from the existing tests on a single aspect of the HRF (e.g., latency or magni-

tude), hypotheses (1) and (2) aim to detect any deviation from the null hypothesized HRF

on the whole time domain, as they involve the entire vector of the HRF. We choose to

construct test statistics based on the kernel-smoothed estimator β̃ instead of the BTik-

Kern estimator β̃
cor

. This is because (1) E(β̃i,k) = 0 as long as E(βi,k) = 0, and (2)

E(β̃i,k) = E(β̃i,k′) as long as E(βi,k) = E(βi,k′) for any fixed bandwidth h. However,

this is not true for β̃
cor

, because regularization renders bias dependent of all the HRFs in

the model under non-orthogonal designs (see Section 3). Thus, tests constructed using

regularization-based estimators, including the SFIR and Tik-GCV estimators, will have

an erroneous type I error as shown in the simulations later. Conceptually, the test statis-

tics can be also constructed directly based on the OLS estimates β̂. However, since the

kernel-smoothed estimator β̃ has a much smaller variance, test statistics based on it will

have a higher statistical power.

Due to the inhomogeneous variances across subjects, for the first hypothesis, we use
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zi,k = (β̃i,k − Bhµk)/σ̂i, where σ̂i is the OLS estimate of σi, to construct the Hotelling’s

T-square test statistic:

Uk = N z̄′kΛ
−1
k z̄k, (7)

where z̄k and Λk are the sample average and the sample variance-covariance matrix of zi,k,

respectively. Assuming the fMRI data for a fixed voxel across different subjects are inde-

pendent and identically distributed (i.i.d.), under the null hypothesis, (N−m)Uk/(m(N−

1)) follows an F distribution with degrees of freedom (m,N −m) (Hotelling, 1931). The

i.i.d. assumption may not exactly hold in fMRI data; nevertheless, with large enough

sample size N , the distribution of (N −m)Uk/(m(N − 1)) under the null is still expected

to closely approximate the F distribution. Then, given the significance level α, the null is

rejected if (N −m)Uk/(m(N − 1)) is larger than 100(1 − α)% percentile of F (m,N −m).

Similarly for the second hypothesis, let Zi
k,k′ = (β̃i,k − β̃i,k′)/σ̂i, for i = 1, · · · , N , and we

use the following test statistic

Qk,k′ = N Z̄′k,k′Ω−1
k,k′Z̄k,k′ , (8)

where Z̄k,k′ and Ωk,k′ are the sample average and variance-covariance matrix of Zi
k,k′ . The

null hypothesis is rejected at α level if (N −m)Qk,k′/(m(N − 1)) is larger than 100(1−α)%

percentile of F (m,N −m).

Confidence intervals can also be constructed for the kernel smoothed HRF estimates.

From equation (4), it is easy to show that V(β̃i) = σ2
iAhΨiA

′
h, where Ψi is the lower

(K×m)-by-(K×m) square sub-matrix of (X′iXi)
−1X′iΣiXi(X

′
iXi)

−1. Here, Σi is estimated

based on the model assumption such as AR(1) or AR(2) for εi (Worsley et al., 2002), and

σ2
i is estimated by its OLS estimate σ̂2

i .

Let τi = (τ i1,1, . . . τ
i
1,m, . . . , τ

i
K,1, . . . , τ

i
K,m)′ be diag(AhΨiA

′
h), where diag(·) represents

the diagonal vector of a square matrix. A 95% confidence band for the individual i’s and
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the population-averaged HRF estimates are

β̃i ± 2 σ̂i
√
τ i, and

1

N

N∑
i=1

β̃i ± 2

√√√√ 1

N

N∑
i=1

σ̂2
i τi,

respectively. Based on the variance matrix for the entire curve of the HRFs for all stimuli,

confidence intervals for the difference between the HRFs corresponding to different stim-

uli can also be constructed. Specifically, let ς ik,k′ = diag(Sk,k′AhΨiA
′
hS
′
k,k′), where Sk,k′ is

an m-by-K×m matrix, whose (l, (k−1)m+ l)th and (l, (k′−1)m+ l)th entries equal 1 and

-1 respectively for l = 1, . . . ,m, and the rest entries equal zero. Then a 95% confidence

band for the difference between the kth and k′th sample-averaged HRFs is given by

Z̄k,k′ ± 2

√√√√ 1

N

N∑
i=1

σ̂2
i ς

i
k,k′ .

2.5. Algorithms for Parameter Selection

We propose two algorithms for selecting the optimal parameters respectively for the

kernel-smoothed estimator β̃i,k and the regularized estimator β̃
cor

i,k . Mean squared er-

ror (MSE) is typically used as the criterion for parameter selection. The σ2
i ’s are highly

heteroscedastic across subjects in real applications; therefore, it is appropriate to weight

each subject’s fMRI data inversely proportional to σ2
i in population-wide inferences: the

weighted MSE (WMSE) is used as the criterion instead. For the kernel-smoothed estima-

tor β̃i,k, only bandwidth h needs to be selected. Define the WMSE of β̃i,k as

WMSEk(h) =
1

N

N∑
i=1

E ||β̃i,k − βi,k||2/σ2
i .

Since the true βi,k’s are unknown, we approximate WMSEk(h) for each candidate h and

select the one that minimizes the WMSE estimate. We describe the technical derivations

of WMSEk(h) in the Appendix and present the selection algorithm below.

Algorithm 1 for selecting bandwidth h for the kernel-smoothed estimator β̃.

11



1. Starting from an initial bandwidth h0 = 1/
√

7/TR, for each stimulus k calculate β̃i,k

for i = 1, . . . , N , and their average, which is denoted by β̃
0

·k.

2. For every subject i, calculate the OLS estimate σ̂2
i of the variance σ2

i of the regression

error in model (2). For each candidate h, calculate matrix Bh and Ah. Assuming

Σi = IT , let

(τ i1,1, . . . τ
i
1,m, . . . , τ

i
K,1, . . . , τ

i
K,m)′ = diag(AhΨiA

′
h),

where Ψi is the lower (K ×m)-by-(K ×m) square sub-matrix of (X′iXi)
−1.

3. For each candidate h, get an estimate of WMSEk(h) as

ˆWMSEk(h) =
N∑
i=1

1

N

m∑
t=1

τ ik,t +
N∑
i=1

1

Nσ̂2
i

β̃
′
·k(h0)(Bh − Im)′(Bh − Im)β̃

0

·k.

4. Choose the h that leads to the smallest ˆWMSEk(h) for each k, or choose a universal

h that minimizes
∑K

k=1
ˆWMSEk(h).

Choosing the proper values of h and λ that control the extent of smoothing and reg-

ularization is crucial in balancing the variance and bias of the BTik-Kern estimator β̃
cor

i,k .

We note that even though β̃
cor

i,k is the estimator we use in analysis, parameter selection

is easier to be conducted on the intermediate Tik-Kern estimator β̃
r

i,k (here β̃
r

i,k denotes

the sub-vector of β̃
r

i corresponding to βi,k). Generalized cross-validation (GCV) (Wahba,

1990) is a standard method for choosing the regularization parameter, and was employed

by Casanova et al. (2008, 2009). GCV improves upon the time-consuming leave-one-out

ordinary cross-validation (OCV). However, GCV cannot be applied to select parameters

for the Tik-Kern estimator, whose prediction errors are different from those of the purely

Tikhonov-regularized estimators. Moreover, GCV cannot be used to choose different op-

timal parameters for different HRFs. To avoid conducting the computationally intensive

OCV, we developed a fast algorithm for choosing h and λ that minimize the WMSE of

β̃
r

i,k, and its computational time is of the same order as T × N for each voxel given the

length of HRF and the number of stimuli.
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We define the WMSE of β̃
r

i,k as WMSEk(h, λ) =
∑N

i=1 E ||β̃ri,k −βi,k||2/(Nσ2
i ). The algo-

rithm is presented below.

Algorithm 2 for selecting h and λ for the Tik-Kern estimator β̃
r
.

1. Starting from an initial bandwidth h0 = 1/
√

7/TR, compute β̃
0

·k as in Algorithm 1.

2. Estimate σ2
i in model (2) by its OLS estimate σ̂2

i for each subject i.

3. For each candidate h, calculate matrix Bh and Ah. Let

(bi1(1), . . . , bi1(m), bi2(1), . . . , biK(m))′ =
(
AhR

i
λ − IK·m

)
β̃

0

·k,

and (τ i1,1, . . . τ
i
1,m, . . . , τ

i
K,1, . . . , τ

i
K,m)′ = diag(AhR

i
λΨi(R

i
λ)
′A′h).

4. For each combination of candidate (h, λ), get an estimate of WMSEk(h, λ) as

ˆWMSEk(h, λ) =
N∑
i=1

1

N

m∑
t=1

τ ik,t +
N∑
i=1

1

Nσ̂2
i

m∑
t=1

(bik(t))
2.

5. Choose the h and λ that minimize ˆWMSEk(h, λ) for each stimulus k or select a uni-

versal pair (h, λ) that leads to the smallest
∑K

k=1
ˆWMSEk(h, λ).

In the above two algorithms, the OLS estimates σ̂2
i are calculated assuming that the

error terms εi are i.i.d. The simulations in Section 3.1 suggest that the proposed methods

are robust to this assumption. In practice, we do not select the optimal parameters for

each voxel, instead we select one set of optimal parameters for each region of interest

(ROI) based on the data from one representative voxel or averaged data of the ROI.

3. Results

In this section, we present the results obtained from simulated data and an event-

related fMRI dataset, where the proposed estimation and testing methods are compared

with three existing methods with similar order of computation: the Tik-GCV (Casanova
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et al., 2008), the SFIR (Goutte et al., 2000), and the basis set method (Friston et al., 1998)

that represents the HRF by a linear combination of the canonical HRF and its temporal

derivative (referred to as the canonical method hereafter).

3.1. Simulated data

Signal Generation. The simulated data follow the experimental design of the real data

— the MID experiment. In summary, fMRI data for N = 19 subjects (the sample size of

the real data) were simulated. For each subject, we generated 223 frames of fMRI data

separated by 2s (TR) from an event-related design with six different stimuli, excluding

the first four frames (T = 219). More details of the design are described in Section 3.2.

Two simulations are conducted: the first focuses on examining the performance of the

proposed method for various possible HRFs and the second focuses on a scenario closely

matching the real MID data.

Simulation 1. Six HRFs were considered: the first is a zero function, corresponding

to non-responsive voxels; and the remaining five (k = 2, ..., 6) follow the form hi,k(t) =

Ai,k ·fi,k(t+δi,k) for i = 1, . . . , N , whereAi,k and δi,k are the subject-specific magnitude and

latency, respectively. The function fi,k(t) controls the shape of the HRFs and is assumed

to be the difference of two gamma density functions (Worsley et al., 2002) as follows

(subscript k is dropped here):

fi(t) = b
a1,i

1,i

ta1,i−1 exp(−b1,it)

Γ(a1,i)
− c · ba2,i

2,i

ta2,i−1 exp(−b2,it)

Γ(a2,i)
. (9)

The parameters for each simulated HRF are given in Table 2 and examples of the simu-

lated HRFs are displayed in Figure 1. Specifically, the second and third HRFs both follow

the canonical form in SPM, differing in subject-specific magnitude and latency. The fourth

and fifth HRFs across subjects also differ in magnitude and latency, but both have differ-

ent functional forms from the canonical one. In addition, to investigate the limitation

of the proposed method, we purposely set the range of the latency variation of the fifth

HRF comparable to its W (2s). The functional form of the sixth HRF is distinct from the
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k Ai,k δi,k a1,i a2,i b1,i b2,i c
2 N(300, 502) 0 6 16 1 1 1/6
3 Ai,2+U(30, 50) U(-0.2,0.2) 6 16 1 1 1/6
4 U(200, 700) 0 20 22 4 4 2/3
5 Ai,4+U(100, 200) U(-1,1) 20 22 4 4 2/3
6 U(300, 800) 0 U(18,22) U(20,24) U(3,4) U(3,4) 1/6

Table 2: The parameters of the simulated HRFs hi,k.

0 5 10 15

0
50

10
0

15
0

time t

HR
F

HRF 2
HRF 3
HRF 4
HRF5

(a) HRF 2 to HRF 5

0 5 10 15

0
50

10
0

15
0

20
0

25
0

time t

HR
F 

(b) HRF 6

Figure 1: Examples of simulated HRFs: (a) one simulated HRF for each of stimuli 2 to 5.
(b) several simulated HRF 6

canonical form and differs in shape across subjects.

Following Casanova et al. (2008), we simulated the error term εi from an autoregres-

sive model of order 4 (AR(4)), representing a structure with a strong autocorrelation (the

lag-1 and lag-2 correlations of the errors are 0.73 and 0.53, respectively; the more detailed

autocorrelation function is provided in the supplementary file):

εi(t) = 0.37 εi(t− 1) + 0.14 εi(t− 2) + 0.05 εi(t− 3) + 0.02 εi(t− 4) + ei(t),

where ei(t)
i.i.d∼ N(0, σ2

i ). To reflect the heteroscedastic variances across subjects in prac-

tice, we let σi ∼ Gamma(1, 1/10) + 10. For individual subject’s fMRI, the signal-to-noise

ratio (SNR) defined as 10 log10

[
var(signal)
var(noise)

]
ranges between -3 to 16 with 99% of proba-

bility. Independent errors were also simulated and the results were very similar (details

are presented in the online supplementary document). This suggests that the proposed

methods are robust to the noise autocorrelation structure under this experimental design.

We simulated 100 i.i.d. fMRI data sets. Within each simulation, we first generatedN =
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19 sets of random functions hi,k(t) for k = 1, . . . , 6, and then computed the observed fMRI

time series Yi from the GLM (2) using the design matrices Xi, the simulated error term

εi(t), and a simulated quadratic drift term d0,i + d1,i · t+ d2,i · t2 with d0,i ∼ U(−1, 1), d1,i ∼

U(−0.1, 0.1), and d2,i ∼ U(−0.05, 0.05), where U(a,b) denotes uniform distribution with

minimum a and maximum b.

Simulation 2. The model for Simulation 2 is chosen to better resemble the real MID

data with the following key properties: (1) brain responses to most of the stimuli are in-

active, (2) neuro-activities across subjects have a large variation, (3) the magnitudes are

positively correlated with the error variance, and (4) the drift terms are in a much larger

scale than HRFs. Specifically, the same experimental design as in Simulation 1 is used,

and the first four HRFs are set to zero. We let hi,5(t) = hi,6(t) = Ai,6fi(t) using the same

fi(t) as that of the sixth stimulus in Simulation 1, and let Ai,6 be simulated from a mix-

ture of uniforms: four out of N from Unif(100, 200) and the rest from Unif(6000, 8000).

The error terms εi(t) are generated under the same AR(4) model as above except that

the σi’s are from Γ(2, 1/10) + 20, and are ordered to have the same rank as that of Ai,6,

representing a strong positive correlation with the magnitudes. The fMRI data were sim-

ulated in the same manner as Simulation 1 with d0,i ∼ U(8000, 15000), d1,i ∼ U(−2, 3), and

d2,i ∼ U(−0.01, 0.01).

Statistical Analysis and Discussion

To compare the different estimation methods, we used the criterion of average relative

error (ARE):

e(Sk) =
1

N

N∑
i=1

|Si,k − Sesti,k |
Si,k

, e(RMSEk) =
1

N

N∑
i=1

‖ βi,k − β̃
est

i,k ‖
‖ βi,k ‖

,

where S stands for a summary statistic of the HRF, including HR, TTP, and W, and RMSE

stands for root mean squared error.

Simulation 1. The median AREs of the estimates for the HRFs by different methods in

Simulation 1 are summarized in Table 3. In the estimation of the first five HRFs, the BTik-
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HRF k BTik-Kern Tik-GCV SFIR (g = 1) SFIR (g = 10) Canonical
2 0.34 0.54 0.66 0.75 0.83
3 0.25 0.60 0.27 0.36 1.70

HR 4 0.47 0.67 0.75 0.92 0.83
5 0.36 0.57 0.65 0.83 0.58
6 0.36 0.58 0.57 0.73 0.82
2 0.21 0.62 0.67 0.75 0.50
3 0.19 0.43 0.43 0.48 0.28

TTP 4 0.19 0.76 0.52 0.76 1.20
5 0.14 0.50 0.26 0.47 0.45
6 0.11 0.17 0.07 0.06 0.68
2 0.29 0.52 0.66 0.60 0.27
3 0.19 0.45 0.30 0.33 0.07

W 4 0.24 1.34 0.28 0.31 1.28
5 0.50 1.50 0.14 0.13 1.50
6 0.20 0.58 0.13 0.13 0.70
2 0.78 1.28 1.09 1.11 1.65
3 0.60 1.19 0.71 0.75 1.68

RMSE 4 0.89 1.68 1.23 1.18 2.36
5 0.79 1.24 0.84 0.92 1.58
6 0.61 0.86 0.69 0.78 1.34

Table 3: Median AREs for estimating HR, TTP, W and RMSE of the simulated HRFs from
different methods in Simulation 1.

Kern estimator clearly outperforms the other methods except for SFIR in approximating

W of the fifth HRF. This is because when the horizontal shifts of HRFs are comparable to

their W, the sample-averaged (averaged for each time point) HRF with an enlarged W has

a very different shape from the individual ones, thus BTik-Kern leads to a biased estimate

of W. Similarly, in the sixth simulation scenario, when very large variations in HRF curves

exist across subjects, an over-shrinkage by BTik-Kern is possible for curves far away from

the average curve, which explains why BTik-Kern is slightly inferior to SFIR in estimating

TTP and W of the sixth HRF. Nevertheless, the advantage of BTik-Kern in estimating the

whole HRF curve (measured by the RMSE) is still evident even under the sixth scenario.

Interestingly, the canonical method leads to larger errors than BTik-Kern even when the

underlying HRFs follow the canonical form (k = 2, 3). This is possibly due to a poor

overall model fitting when the other HRFs are distinct from the canonical form, since
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the HRFs corresponding to different stimuli are estimated simultaneously. The separate

effects of kernel-smoothing, regularization, and bias correction on the HRF estimation are

clearly illustrated in Figure 2, where the estimation of one hi,2(t) is used as an example:

kernel-smoothing increases the temporal continuity of the OLS estimate; regularization

further reduces the variability of the estimate in magnitude, but also introduces a large

bias; the bias-correction step adjusts this bias and nearly recovers the underlying truth.
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Figure 2: Four estimates of a random hi,2: (a) the OLS estimate of the HRF with ran-
domly generated fMRI data; (b) the kernel-smoothed estimate using the selected h; (c)
the Tikhonov-regularized and smoothed estimate (Tik-Kern) using the selected h and λ;
(d) the bias-corrected (BTik-Kern) estimate using the selected h and λ.

For hypothesis testing, the proposed kernel-smoothed tests, based on statistics (7) and

(8), are compared with the Hotelling’s t-tests of HRF estimates obtained from Tik-GCV

and SFIR. The parametric canonical method is excluded from the comparison, because

the resulting estimates with similar shapes are not suitable for Hotelling’s tests. Readers

are referred to Calhoun et al. (2004) and Lindquist et al. (2009) for details of hypothesis

testing based on the canonical method. Here we first evaluated the type I error of the

tests by testing the significance of the first HRF — since h1 = 0, any significant result

detected by a test is a type I error. The proposed test (7) has a much smaller type I error
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than the tests by the other methods as shown in the first column of Figure 3. In fact, tests

based on the Tik-GCV and SFIR with inflated type I error resulted from the bias induced

by the regularization incorrectly rejected the null (no signal) at the 5% level in almost

all of the simulations, while the kernel-smoothed tests did so in 20% of the simulations

due to the almost singular design matrix. We found that if the design matrix is non-

singular, the kernel-smoothed tests will achieve the nominal 5% significance level, while

Tik-GCV and SFIR still have inflated type-I error (the simulation result is illustrated in

the supplementary file).
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Figure 3: The P-values of testing HRFs using different methods in Simulation 1.

To evaluate the statistical power of the tests, we conduct tests on the difference be-

tween pairs of the HRFs—since the underlying truth is hi,k 6= hi,k′ , any failure in rejecting

the null is a type II error. The proposed method is based on the test statistic Qk,k′ in (8).

The second and third columns of Figure 3 display the histograms of the P-values of test-

ing hi,2 vs. hi,4 and hi,4 vs. hi,5, respectively, using the different methods. SFIR appears
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to have the largest power, as it correctly rejected the null in all simulations, while BTik-

Kern has a smaller power. However, in another simulation where hi,5 was set to equal

hi,4 with the rest of HRFs unchanged, both SFIR and Tik-GCV incorrectly rejected the null

hypothesis most of time. We suppose the power gain of these two methods is at the cost

of a large type two error for this example. Comparisons of the other pairs of HRFs show

a similar pattern.

Simulation 2. Due to the large variation of HRFs in shape and magnitude across sub-

jects, SFIR performed best in estimating TR and the entire function. However, BTik-Kern

beat the other two methods in estimating TTP and W (the numerical results are omitted

here). In addition, kernel method achieved a much better power in hypothesis testing

than SFIR and Tik-GCV with the type I error kept at a nominal significance level. Figure

4 shows the histograms of P-values of testing (1) Ehi,1 = 0, (2) Ehi,5 = 0, (3) Ehi,6 = Ehi,5
and (4) Ehi,5 = Ehi,4 in 100 i.i.d. simulations through the three methods. In the first

and third tests with true null hypotheses, the smoothed method has a reasonably flat his-

togram, indicating its P-value close to the nominal level, and it also demonstrates a larger

power than SFIR and Tik-GCV in the other two tests. Because most HRFs are not signifi-

cant, the inflated type I errors of SFIR and Tik-GCV no longer exist in this example (more

discussions on this issue are given in Conclusion). However, possibly due to the shrink-

age imposed by Tikhonov regularization in these two methods, the resulting two tests are

not sensitive to the deviation from the null hypothesis, compared to the kernel-smoothed

method.

3.2. Illustrative example

Subjects. The data were collected from the Monetary Incentive Delay (MID) Experiment,

which measures subjects’ brain activity related to reward and penalty processing (Knut-

son et al., 2000). In total, 19 subjects (10 male, 9 female) participated in exchange for

financial payment ($40.00 minimum, plus whatever money they managed to win during

the study task). Subjects were recruited from a larger representative longitudinal com-

munity sample (Allen et al., 2007). All participants were between 22 and 25 years of age

20



Kernel method

Pvalue on zero HRF1

Fr
eq

ue
nc

y

0.0 0.4 0.8

0
5

10
15

20
Kernel method

Pvalue on nonzero HRF5

Fr
eq

ue
nc

y

0.0 0.4 0.8

0
5

15
25

Kernel method

Pvalue equal HRF5 vs HRF6

Fr
eq

ue
nc

y

0.0 0.4 0.8

0
5

10
15

20

Kernel method

Pvalue HRF4 vs HRF5

Fr
eq

ue
nc

y

0.0 0.4 0.8

0
5

15
25

Tik−GCV method

Pvalue on zero HRF1

Fr
eq

ue
nc

y

0.0 0.4 0.8

0
5

10
15

20

Tik−GCV method

Pvalue on nonzero HRF5

Fr
eq

ue
nc

y

0.0 0.2 0.4 0.6

0
5

15
25

Tik−GCV method

Pvalue equal HRF5 vs HRF6

Fr
eq

ue
nc

y

0.0 0.4 0.8

0
5

10
15

20

Tik−GCV method

Pvalue HRF4 vs HRF5

Fr
eq

ue
nc

y

0.0 0.2 0.4 0.6

0
5

15
25

SFIR g=1

Pvalue on zero HRF1

Fr
eq

ue
nc

y

0.0 0.2 0.4 0.6

0
5

10
15

20

SFIR g=1

Pvalue on nonzero HRF5

Fr
eq

ue
nc

y

0.0 0.2 0.4

0
5

15
25

SFIR g=1

Pvalue equal HRF5 vs HRF6

Fr
eq

ue
nc

y

0.0 0.4 0.8

0
5

10
15

20

SFIR g=1

Pvalue HRF4 vs HRF5

Fr
eq

ue
nc

y

0.0 0.2 0.4

0
5

15
25

Figure 4: The P-values of testing HRFs using different methods in Simulation 2.

at the time of participation, with 37% identified as black and 63% identified as white.

Experimental Design. In the MID task, each participant completed a protocol comprised

of 2 blocks of 72 6-s trials involving either no monetary outcome (control task), a potential

reward (reward task), or a potential penalty (penalty task). During each trial, participants

are shown a shape for 500 ms (anticipation condition), a variable interval delay of between

4000 and 4500 ms, and a white target square lasting between 160 and 260 ms (response

condition). Participants are then instructed to respond with a button press. The cue shape

(circle, square or triangle) shown at the start of each trial signals the type of the trial to

be implemented, i.e., reward, penalty or no incentive respectively. Additionally, each

reward and penalty shape included lines across the shape, which indicated the amount

of money the participant could win or lose during the trial (i.e., 3 lines = $5.00, 2 lines

= $1.00, and 1 line = $0.20). Participants were also told that their reaction times to the

white target would be recorded, and that receiving the monetary reward or preventing

21



punishment depended on whether they responded within a given window of time. The

order of trials in the protocol for each participant was randomized, with 25% of them

control trials, 37.5% reward trials, and 37.5% punishment trials. In addition to the fMRI

data, measures of each subject’s state anxiety were collected using the state-trait anxiety

inventory (Spielberger and Vagg, 1984).

Data Acquisition and Preprocessing. Functional images were acquired using a Siemens

3.0 Tesla MAGNETOM Trio high-speed magnetic imaging device at UVA’s Fontaine Re-

search Park, with a CP transmit/receive head coil with integrated mirror. Two hundred

twenty-four functional T2∗-weighted Echo Planar images (EPIs) sensitive to BOLD con-

trast were collected per block, in volumes of 28 3.5-mm transversal echo-planar slices

(1-mm slice gap) covering the whole brain (1-mm slice gap, TR=2000ms, TE=40ms, flip

angle=90◦, FOV= 192 mm, matrix= 64×64, voxel size= 3×3×3.5mm). Prior to the collec-

tion of functional images, 176 high-resolution T1-magnetization-prepared rapid-acquisition

gradient echo images were acquired to determine the localization of function (1-mm

slices, TR=1900 ms, TE=2.53ms, flip angle= 9◦, FOV=250mm, voxel size= 1×1×1mm).

Data were preprocessed and analyzed using FMRIB’s Software Library (FSL) software

(Version 5.98; www.fmrib.ox.ac.uk/fsl, Smith et al., 2004; Woolrich et al., 2009). Motion

correction involved FMRIB’s Linear Image Registration Tool, an intra-modal correction

algorithm tool (MCFLIRT; Jenkinson et al., 2002), with slice scan-time correction and a

high-pass filtering cutoff point of 100 seconds, removing irrelevant signals. We used BET

(Smith, 2002) brain extraction, eliminating non-brain material voxels in the fMRI data,

and a 5-mm full width at half maximum Gaussian kernel for smoothing. Images were

registered to the Montreal Neurological Institute (MNI) space by FLIRT (Jenkinson et al.,

2002). Regions of interest (ROIs) were determined structurally using the Harvard sub-

cortical brain atlas, and were chosen for their likely involvement in affective processing

based on previous studies of affective neural processes (e.g., Knutson et al., 2000). The

ROIs chosen for analysis were the right putamen, right caudate, right nucleus accum-
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bens, right pallidum, and right amygdala.

Statistical Analysis and Discussion We included six stimuli in the GLM for the MID data:

the three signal stimuli for the three types of monetary outcomes and the corresponding

three reaction stimuli to which the participants are required to respond. The six stimuli

are henceforth referred to as neutral anticipation, reward anticipation, penalty anticipa-

tion, neutral response, reward response, and penalty response. Our analysis focused on

three goals: first, identifying the brain voxels responsive to each stimulus, especially those

involving monetary outcomes; second, identifying the voxels that react differentially to

monetary reward and punishment stimuli; and third, modelling the relationship between

subjects’ brain functions related to reward and punishment processing measured by the

fMRI data and self-reported state anxiety.

To identify the brain voxels responsive to each stimulus, we conducted the proposed

kernel-smoothed hypothesis tests in Section 2.4 using the test statistic (7). Comparisons

were drawn to the Tik-GCV and the SFIR. Analysis results show a similar pattern across

the five ROIs; thus, results for only the right caudate and putamen are presented below.

Rows 1-3 in Table 4 summarize the percentages of the voxels in each ROI responsive,

respectively, to the neutral response, the reward anticipation, and the penalty anticipa-

tion stimuli, identified at a significance level of .05 by tests based on the three methods.

Among the six stimuli, the kernel-smoothed tests identified the most responsive vox-

els corresponding to these three stimuli. By contrast, SFIR and Tik-GCV detected much

fewer responsive voxels than the kernel-smoothed test (7) to all the stimuli. In Figure 5,

panels (a), (b) and (c), respectively, show the significant voxels identified by the kernel-

smoothed tests in the right caudate responsive to neutral response, reward anticipation,

and penalty anticipation cues, and panels (d), (e), (f) respectively show the corresponding

voxels in the right putamen. These findings are consistent with previous MID findings

that the right caudate and putamen are sensitive to the motivational value (reward re-

sponse and penalty anticipation) of stimuli (Knutson et al., 2000; Knutson et al., 2001;

Bjork et al., 2004).
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subject of test ROI BTik-Kern Tik-GCV SFIR
penalty right caudate 32.3 5.4 3.3
anticipation right putamen 43.9 2.9 4.2
reward right caudate 29.4 14.0 6.1
anticipation right putamen 40.0 14.7 4.2
neutral right caudate 27.6 5.1 5.5
response right putamen 45.3 5.4 8.2
neutral vs. penalty right caudate 19.4 3.4 4.7
anticipation1 right putamen 13.2 2.1 4.7
neutral vs. penalty right caudate 17.1 5.0 7.8
response2 right putamen 20.4 3.8 15.4
regression of right caudate 6.6 0.6 3.0
state anxiety3 right putamen 14.3 1.0 2.5

Table 4: The percentages of significant voxels in the right caudate and the right putamen
identified by different tests. 1 Voxels react differentially to neutral anticipation stimu-
lus versus penalty anticipation stimulus; 2 Voxels react differentially to neutral response
stimulus versus penalty response stimulus; 3 Voxels with difference in HRF magnitudes
between penalty anticipation and neutral anticipation stimuli that are significantly pre-
dictive of the individual state anxiety score.

To identify the brain voxels that react differentially to the monetary and the neutral

stimuli, we conducted tests on six pairs of HRFs: neutral vs. reward, neutral vs. penalty,

and reward vs. penalty for both anticipatory and response stimuli. The percentages of

significant voxels in the ROIs from the three methods are displayed in rows 4-5 in Table

4. The kernel-smoothed tests, based on the statistic (8), identified a sizable number of

voxels at a significance level of .05 that react differentially in two among the six pairs

of comparisons: neutral anticipation vs. penalty anticipation, and neutral response vs.

penalty response. The corresponding significant voxels in the right caudate and putamen

are shown in Figures 6. By contrast, the Tik-GCV and SFIR identified very few voxels that

function differentially for these two pairs of comparisons.

To explore the connection between reward-processing brain activity and subjective

experience, as measured by the state anxiety score, we conducted a multiple linear re-

gression with the state anxiety as the dependent variable, and the four magnitude differ-

ences between the HRFs of monetary and neutral stimuli as predictors. The BTik-Kern
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Figure 5: Tests on neutral reaction, reward anticipation and penalty anticipation stim-
uli 5(a),5(b), 5(c): Tests based on kernel-smoothed HRF estimates for voxels in the right
caudate. 5(d),5(e), 5(f): Tests based on kernel-smoothed HRF estimates for voxels in the
right putamen.

estimator β̃
cor

i,k was used to estimate the HRFs, the HR of which was extracted for con-

structing the predictors. For both the right caudate and putamen, across the four predic-

tors, the BTik-Kern identified a sizeable number of voxels that are significantly (P-value

.05) associated with the magnitude difference between the penalty and neutral anticipa-

tion stimuli, while none of the other methods showed significant results for any of the

four predictors (row 6 in Table 4). Figure 7 shows the significant voxels in the right cau-

date and putamen detected by the BTik-Kern. In addition, state anxiety was found to

be positively correlated with penalty stimuli and negatively correlated with reward stim-

uli. Given that penalty anticipation is expected to co-vary with state anxiety, the finding

that penalty anticipation in the right putamen is significantly positively correlated with

state anxiety provides compelling evidence that the HRFs estimated by the BTik-Kern are
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Figure 6: Figure 6(a) and 6(c) compare the HRFs of neutral anticipation and penalty
anticipation through the kernel-smoothed method for voxels in the right caudate and
right putamen, respectively. 6(b) and 6(d) compare the HRFs of neutral response and
penalty response through the kernel-smoothed method for voxels in the right caudate
and right putamen, respectively.

picking up on meaningful variance in the data.

4. Conclusions

Within the framework of the GLM, we propose two nonparametric HRF estimators

that provide flexible modeling of brain activities across different brain regions, stimuli

and subjects. The first kernel-smoothed estimator is developed to construct population-

wide hypothesis tests on brain responses to stimuli. This test is on the whole HRF curve

rather than only summaries of the HRF, as in standard methods; simulations suggest

that it has a much smaller type I error than the standard t-tests based on several existing

regularization-based estimators, such as SFIR and Tik-GCV.

It is important to point out that the larger power of the tests through SFIR and Tik-GCV

methods is largely countered by an enormous type I error, while the kernel-smoothed

test (7) has a much smaller type I error under the (close to) singular MID design. Ad-
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Figure 7: Voxels in the right caudate and right putamen, respectively, whose HRF-
magnitude difference under penalty anticipation and neutral anticipation stimuli are sig-
nificantly correlated with subjects’ state anxiety measures.

ditional simulations (presented in the online supplementary document) show that the

kernel-smoothed tests have a type I error very close to the nominal 5% level when the de-

sign matrix is non-singular. The inflated type I errors of SFIR and Tik-GCV are possibly

due to the bias incurred by Tikhonov regularization. In the non-orthogonal design we are

investigating, this bias depends on the values of all the HRFs in the model. We expect two

scenarios under which the tests on HRFs of a single stimulus through SFIR and Tik-GCV

have the nominal significance level: (1) most or all the HRFs are zero functions, or (2)

the design is orthogonal such that HRF estimates for different stimuli are independent.

However, under the second circumstance, if the number and the order of stimuli evoked

in the experiment are not balanced, the biases due to Tikhonov regularization are possi-

bly unequal for different HRFs. Consequently, inflated type I error may still persist in the

SFIR or Tik-GCV based tests for pairwise comparisons between the HRFs if the HRFs of

most stimuli are far from zero.

The second estimator (BTik-Kern) is constructed by applying both Tikhonov regu-

larization and kernel-smoothing to the OLS estimate, where the kernel bandwidth and

regularization parameter separately control the extent of smoothness and regularization

constraints on the estimates. Generally, to achieve efficient estimation, the larger the HRF

temporal resolution is, the smaller the smoothing bandwidth should be; the smaller the
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SNR is, the stronger the regularization should be. Under the studied experimental design,

we found that BTik-Kern generally outperforms Tik-GCV and SFIR in terms of estimation

error. The proposed kernel smoothing method does not require any differentiability con-

straint and works well when the underlying function is non-differentiable and the obser-

vations are reasonably dense. However, if the temporal resolution of the HRF is small, for

differentiable HRFs, kernel smoothing may be inferior to the regularization methods that

directly utilize the differentiability assumption, such as Tik-GCV and SFIR.

A main thrust of this paper is to employ sample-averaged HRFs in multi-subject data

for bias correction. As shown in the simulations, this is very effective in reducing estima-

tion errors. The reasons for this improvement are two-fold: first, in principle, the common

characteristics shared by HRFs across subjects can be evaluated most efficiently by using

all the data; second, the sample-averaged HRF estimate approximates the shape of the

HRFs across subjects well when they are not very different from each other. However,

BTik-Kern may perform poorly when the underlying HRFs vary tremendously across

subjects, but this is less of a concern for HRFs in the same brain region and under the

same stimulus. Along the lines of borrowing information from the sample average, it

is also possible to conduct bias correction towards SFIR and Tik-GCV; this is subject to

further investigation.

Although our primary goal was not to investigate the choice of regularization param-

eters for different HRFs, we indeed observed that the optimal parameters can vary across

stimuli. When some specific HRFs display distinct properties from the rest, it is more

desirable to select the regularization parameter suitable for estimating only those HRFs.

To this end, BTik-Kern is more adaptive than Tik-GCV, as it allows using different param-

eters for different HRFs.

As the HRF temporal resolution increases, the number of free parameters also in-

creases. Consequently, the variability of nonparametric HRF estimates generally increases

as well. In addition, the design matrix would become close to singular given a fixed

observational time. Under this situation, a mild Tikhonov regularization with a small
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parameter λ is recommended for calculating the subject-averaged HRF estimate.

The false discovery rate of the multiple hypothesis testing can be evaluated and con-

trolled by the empirical Bayes estimate by Efron (2008) or the approaches by Benjamini

and Hochberg (1995) and Genovese (2000). However, correction of multiple compari-

son by evaluating family wise error of the proposed test is difficult, because many fac-

tors, such as how the errors are correlated temporally and spatially, and how HRFs vary

across subjects, stimulus types and voxels, may affect the error rate. This issue is beyond

the scope of current paper, and is subject to more investigation in future research.

The online supplementary document is available at:

http://www.stat.duke.edu/∼ fl35/HRF/SupplHRF.pdf.

Appendix

A. Evaluation of WMSEk(h). We first show the derivation of the WMSE of the nonpara-

metric estimator β̃i, i = 1, . . . , N . It is easy to see that

E[β̃i,k(t)− βi,k(t)]2/σ2
i = E[V(β̃i,k(t)|i)]/σ2

i + E[E(β̃i,k(t)|i)− βi,k(t)]2/σ2
i .

As the OLS estimate η̂i = ηi + (X′iXi)
−1X′iεi, we have

E(β̂i|i) = βi and V(η̂i|i) = σ2
i (X

′
iXi)

−1X′iΣiXi(X
′
iXi)

−1.

With Σi = IT , V(η̂i|i) = σ2
i (X

′
iXi)

−1. Denote V(β̂i|i) by σ2
i Ψi, which is the sub-matrix of

V(η̂i|i) corresponding to β̂i. Then we have

β̃i = Ahβ̂i, E(β̃i|i) = Ahβi and V(β̃i|i) = σ2
iAhΨiA

′
h.

For estimating the bias E[E(β̃i,k(t)|i)− βi,k(t)]2, since E(β̃i,k|i)− βi,k = (Bh − Im)βi,k, then

||E(β̃i,k|i)− βi,k||2 = β′i,k(Bh − Im)′(Bh − Im)βi,k.
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Combining the above equation and the formula for V(β̂i|i), we have

WMSEk(h) =
N∑
i=1

m∑
t=1

τ ik,t/N +
N∑
i=1

β′i,k(Bh − Im)′(Bh − Im)βi,k/(Nσ
2
i ).

In practical approximation, σ2
i above is estimated by its OLS σ̂2

i , and the βi,k’s are all

replaced with their sample average β̃
0

·k.

B. Evaluation of WMSEk(h, λ). The Tikhonov-regularized estimator of ηi is given by

η̂Ti = (X′iXi + λD)−1X′iYi = (X′iXi + λD)−1(X′iXi)η̂i.

Because the lower left (K×m)-by-3 sub-matrix of (X′iXi +λD)−1(X′iXi) equals zero, then

the sub-vector β̂
T

i of η̂Ti , which is corresponding to βi, equals Ri
λβ̂i. Consequently, the

Tik-Kern estimator is essentially the kernel-smoothed β̂
T

i : β̃
r

i = AhR
i
λβ̂i. We can easily

get its bias and variance as

E(β̃
r

i |i) = AhR
i
λβi and V(β̃

r

i |i) = σ2
iAhR

i
λΨi(R

i
λ)
′A′h.

The WMSE of β̃
r

i,k can be derived in a similar way as that of β̃i,k.
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